Current methods and limitations for longitudinal fMRI analysis across development
نویسندگان
چکیده
The human brain is remarkably plastic. The brain changes dramatically across development, with ongoing functional development continuing well into the third decade of life and substantial changes occurring again in older age. Dynamic changes in brain function are thought to underlie the innumerable changes in cognition, emotion, and behavior that occur across development. The brain also changes in response to experience, which raises important questions about how the environment influences the developing brain. Longitudinal functional magnetic resonance imaging (fMRI) studies are an essential means of understanding these developmental changes and their cognitive, emotional, and behavioral correlates. This paper provides an overview of common statistical models of longitudinal change applicable to developmental cognitive neuroscience, and a review of the functionality provided by major software packages for longitudinal fMRI analysis. We demonstrate that there are important developmental questions that cannot be answered using available software. We propose alternative approaches for addressing problems that are commonly faced in modeling developmental change with fMRI data.
منابع مشابه
EEG/fMRI fusion based on independent component analysis: integration of data-driven and model-driven methods.
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provide complementary noninvasive information of brain activity, and EEG/fMRI fusion can achieve higher spatiotemporal resolution than each modality separately. This focuses on independent component analysis (ICA)-based EEG/fMRI fusion. In order to appreciate the issues, we first describe the potential an...
متن کاملTest-retest reliability of longitudinal task-based fMRI: Implications for developmental studies
Great advances have been made in functional Magnetic Resonance Imaging (fMRI) studies, including the use of longitudinal design to more accurately identify changes in brain development across childhood and adolescence. While longitudinal fMRI studies are necessary for our understanding of typical and atypical patterns of brain development, the variability observed in fMRI blood-oxygen-level dep...
متن کاملStatistical Analysis Methods for the fMRI Data
Functional magnetic resonance imaging (fMRI) is a safe and non-invasive way to assess brain functions by using signal changes associated with brain activity. The technique has become a ubiquitous tool in basic, clinical and cognitive neuroscience. This method can measure little metabolism changes that occur in active part of the brain. We process the fMRI data to be able to find the parts of br...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملA Longitudinal Model for Functional Connectivity Using Resting-State fMRI
Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. The current fMRI modeling literature lacks a generally applicable model appropriate for longitudinal designs. In this work, we build a novel longitudinal functional connectivity (FC) model using a variance components approach. First, for all subjects’ visits, we account for the autocorr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental cognitive neuroscience
دوره شماره
صفحات -
تاریخ انتشار 2017